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The variational path-integral method is used to calculate the partition function with an effective po-
tential of a nonlinear open system, which is described by the system-plus-environment model. The two
variational parameters corresponding to the potential and the coupling form factor, respectively, in the
quadratic trial action are determined by minimizing the effective potential. A general expression for the

partition function at finite temperature is obtained.
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I. INTRODUCTION

The variational approach to path integrals was
developed first by Feynman as early as 1972 [1]. In the
last decade, a considerable improvement on Feynman’s
original variational approximation has been put forward
by Giachetti and Tognetti [2], and independently by
Feynman and Kleinert [3]. The basic idea of the refined
treatment is to make up a quadratic trial action and to
use the affiliated frequency as a variational parameter; the
result leads a second-order effective potential. This
method can yield realistic thermodynamic properties of
quantum statistical systems and it also requires much less
computer time. Then the variational path-integral theory
has been applied successfully to several nonlinear statisti-
cal systems [4-7]; some comparative studies of a model
using the quantum Monte Carlo and effective potential
methods were also done in [8]. Only very recently,
Kleinert and co-workers [9] proposed corrections of this
method for the anharmonic potential carried out to
higher-order terms. However, the theory so far has been
limited to conservative systems and the case of linear
coupling between the collective coordinate and the envi-
ronmental oscillators [10]. In the present paper we apply
the variational path-integral formulation to calculate the
effective potential of a nonlinear quantum open (dissipa-
tive) system.

II. MODEL AND FORMULAS
The system under study is governed by the Lagrangian

L=1mi*—V(x)

2
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where x and g, are the collective coordinate and the

coordinates of the environmental oscillators, respectively,
and the coupling form factor f(x) is assumed to be a gen-
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eral function of the collective coordinate. Note that here
the coupling term is written in a form that does not in-
duce a renormalization of the potential [11,12].

We start with the Feynman path-integral form of the
partition function. By eliminating the environmental de-
grees of freedom [1], the partition function at tempera-
ture kz T=1/p can be expressed only by an integral over
the collective coordinate x(7) as

Z(B)= [ D[x]exp[ —Se(x)/#] . 2)
Here the effective action S 4(x) is given by
Seﬁ(x)=f0ﬁﬁ[~;-m562+V(x)]d'r
B B, ,
+%f0 deO dr'k(r—1")
X f(x(T))f(x(7)), ©)]

where the last term describes the influence of the environ-
ment. In Eq. (3), the influence kernel k() is given by
N | _ca ,
k(r—7 )—o?;‘,l S S(r—7'):
¢l cosh[w,(|T—7'|—0.5%B)]
sinh(0. 5%Bw,,) ’

4)
where :8(7—7'): is a generalized delta function with a
period #p.
The paths are periodic and may be represented as a
Fourier series

2m, o,

x(1)=xq+x(1T)=x¢+ 3 [x,exp(if,7)+ c.c.], (5)
n=1
where 0, =27p /#i are the Matsubara frequencies,

x0=(1/fiB)f x(r)dT is the
foe-i-ix,fg’:x * -

Using a measure of the product of integrals of all

Fourier components [10], the partition function then has

the appearance of a classical partition function with an

effective potential Wi(x,):
m

172
Z=f_w 217.,%23

dxgexp[ —BWi(x,)] . (6)
The effective potential can be written

average path, and

Xn
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i 1 (8
exp[ —BW(x,)1= [ D[x,lexp —mﬁzloﬂxnv—;fo V(xo+x,(r)dr
1 B #ip ’ ’ 4
=57 [ dr [ ATk (r— ) f (o x (TS (o +x, (7)) | - )

To find a simple but very accurate approximation to
W(x,), we make up a quadratic trial action. The main
idea is to decompose the potential as well as the coupling
form factor into

V(x(1)=1mQ%x,)[x(1)—x0 >+ V(x(7)) (8)
and
Fx (M) =plxg)[x(1)—xo ]+ F(x(7)), 9)

which involve the unknown x-dependent frequency

function Q%(x,) and slope function u(x,), which can be
]

[
determined further by the variational method. This is an
improvement over the Giachetti-Tognetti and Feynman-
Kleinert original approach.

Substituting Egs. (8) and (9) into (7), and representing
the influence kernel k(7) as a Fourier series

—ﬁlﬁ S K(6,)exp(if,7) , (10)

we perform the integral of the quadratic part of the
effective action over the fluctuation modes,

k()=

® K(6,)
Zl(x0)=fD[xl]exp[—~mBE 62 + 0%(xo)+uix,) - Ixniz}
n=1
-1
d K(6,)
= I 6% |62 +Q%xq)+puxg) — ] , (11)
n=1
where K(6,,) is the Laplace transform of k(7) and is given by
2 2
had ca 9"
K(6,)= —— (12)
O)= 2 2t e
Then Eq. (7) becomes
_ 1 r#B
exp[—-ﬁW(xo)]-—Zl(xo)<expl—;fo Vixg+x,(7))dr
1 ﬁB ﬁB ’ INT rd ’
—E_h'fo dr [ d”‘(f‘f>f(xo+x1<f>>f<xo+x1<r))J>1, (13)

where V(x(r)) and f(x(r)) are determined by Egs. (8) and (9), respectively, and the bracket { ), denotes the expecta-
tion value calculated by the Gaussian probability distribution:

631 +QZ(XQ )+[L2(XO)

Z Y(x,) exp ‘—mBE

n=1 m

According to the Jensen-Peierls inequality, we have

K(8,)

Ix,,|2] . (14)

z,(x0>< exp [—%f:ﬂdr [V(x(‘r))—*—%f(x(T))foﬁBdT'k(T—T')f(x(T'))] }>1

> Z,(x) exp(——ﬁ( P =5z [ Par [ Parkc—r (T F ), a9

in which { P(x(7))), arises from the original potential by smearing it out in the neighborhood of each point x, with the

distribution (14) [3],

_ e dx o (x —x¢)?
<V(X(T))>l_f_°°\/21ra2 V(x)exp ——
where
-1
2 2 K(6,)
az(xo)=m—'8n§1 0% +Q%(xy)+u(xg) .

=V

a(xg) (16)

(17)
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On the right-hand side of Eq. (13) we still need to calculate the correlation function of the coupling form factor
within the measure of the partition function Z,(x,). For this we transform f(x(7)) into its Fourier components

Fxtn=[~ ‘Zi—exp[th(r 17*(k) (18)

Using the partition function Z,(x,) in the form of (14), the expectation value now can be written as follows:

~ ~ o K(6,)
(f(x(*r))f(x(‘r’))>1=Zl_l(x0)fD[x1] exp [—mBE 0% +Q%xq)+pi(xy) |xn|2]
n=1
w dky dk, ~
o f_w e ALY
Xexp [ik1 x0+§[xnexp(i9n7')+c.c. ]
n=1
Xexp lik2 xo+ §[x, exp(i6,7')+ c.c.] (19)
I=1

As far as the integrals over x, are concerned in Eq. (19), those terms originating from the Fourier transform can be
combined with the quadratic terms. Performing the integrals over x, based on the verticality of the triangle function,
we have

(FxnFaen=[ [

where bz(xo,‘r—'r ) is the sum

dk, dk o
L2 7*(k)F*(ky) expli(k, +ky)xo—Lta2(xo) (k3 +k2)—bHxq,r—7)k 1k, (20)

K, |

bAxg,7— T)——ZB—E cos[0,(r—7')] |62
n=1

Comparing (17) with (21), it is found that b%(x,,7—7') <a?*(x,). It is also noticed that the time dependence in x(7) has
disappeared now. Inserting the Fourier representation of f*(k),

Frk)= [ dx f(x) exp(—ikx) , 22)
we can perform the integral over k again via quadratic completion. Thus Eq. (20) becomes

<f‘(x<r))f(x(r'>)>1=51;(a4—b4>"”2

+Q%x,)+p2(xq) 1)

(x1+x2—2x0)2 (x7—x,)?

X d dx,f(x x,) (23)
J2 D dmdnl eof o) exp 4a’+b?)  4a>—b?)
It is also quite easy to calculate the correlation function of the collective coordinate as

(x(P)x(7'));=x3+bXxg,7—7'). (24)
This is the desired result for the effective potential:

Q%(xg) K(6,) ) )
Wi(xy)= B 2 In {1+ +ul(xg) +V 2xo)—3mQ3(xg)a(x)
n=1 n n
2ﬁﬁf de dr'k(r—7 ) f(x(D)f(x (7)),
-1
K(6 K(6,)
-B— 2#2(x0) 2102+ 0%xg) +pl(xy) —— ] . 25)
n=1
[
We are in a position to determine the two unknown trial 1 = [K%6,)—K(8,)K(0,)I,
functions Q%(x,) and u?*(x,) by minimizing W,(x,). 8=?A_ 2_ A?A? (28)
AW,  3W, aa>  3W, gb> ) "

Wi)e2= + + =0, d

Wiw=30r T 302 907 T a6 002 06 an 6K (O

oy =W 3Wi Bt Wy b2 _ p xo)——i- b LK(o, et LIy (29)

Vi3> aa® au® 8b? o’ b=t AlAy

The results are Here

Qxg)= 8V"2+ @7 A=S kX6, K(6)K(6,) (30)

o da 2 ’ Ln=1 AIZAr%

in which and
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e . KOy
Ai=9i+'0' (x°)+[l- (XO)T (l=l’n’]) ’

1 p#, B, , |9 , 19 '
I"=%Efo deO dr'k(r—1) Ezg(f(x('r))f(x(f)))1+ COS[G,,(T_T)]Sb_2<f(x(7'))f(X(T))>1 .

The self-consistent equations (17), (21), and (27)-(31)
must be solved numerically at each x, by iteration. Thus
one can obtain the best upper bound W,(x,) for the
effective potential W(x,).

III. APPLICATION AND SUMMARY

In particular, when the dissipation between system and

bath is linear, i.e., f(x)=x, we set

I,=K(6,), I,=K(6,), (33)
then
5=0, p’=1. (34)

This is in agreement with [10].

As a simple physical application, we now consider a
smooth coupling function f(x(7)) as a function of the
fluctuation paths and expand it to second order near each
average path x,. This treatment is also applicable to
many cases. With

S(x(P))=fxg)+ f(x0)[x(7)—x4]

+1f"(xo)[x(T)—x0]%, (35)

we find
(flx(mNf(x(T)N),

=fUxo)+f(x0)f"(x0)a?+ f2x4)b?

+1f "% (xoNa*+2b%) . (36)
Therefore

I,=f"x)K(6,)+ fuz(xo)—ml—ﬂélf—(%”’—) Y
Then

5659
31
(32)
-
50x.) FHxo) = [KX6,)—K(6,)K(6,)IK(6;,,)
x e —
" 2mBA |4, AfAZA;
#0 , (38)
pHxg)=f"4x)
+f"2(xo) i [K(6,)—K(6,)]K(6;+))
mBA | <, A7 A} A;
(39)

Explicitly, the form of the trial frequency Q*(x,) is
different from that of conservative systems even for a har-
monic potential system.

By construction, the variational result W, (x,) for
W(x,) becomes more accurate as the temperature is in-
creased. In the low temperature case, because here two
variational parameters are introduced, this variational
approach is also expected to yield reliable results. This
would be analyzed using Janke’s method [6].

In summary, the theory presented in this paper ac-
counts reliably for both quantum and dissipative effects.
The two variational parameters corresponding to the fre-
quency of the potential and the slope of the coupling
form factor are determined by minimizing the effective
potential with respect to Q%x,) and u*(x,). It is also
clear from studying a simple nonlinear dissipative exam-
ple that the expression of the optimal affiliated frequency
is different from that of conservative systems. In the fu-
ture, more work needs to be done to apply this variation-
al approach to a realistic open system with a large dissi-
pative effect.
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